MONTHLY WEATHER REVIEW #### SEVERE LOCAL STORMS, JANUARY 1944 (Compiled by Mary O. Souder) [The table herewith contains such data as has been received concerning severe local storms that occurred during the month. A revised list of tornadoes will appear in the United States Meteorological Yearbook] | Place | Date | Time | Width
of path,
yards | Loss
of
life | Value of
property
destroyed | Character of storm | Remarks | |--|----------------|------|----------------------------|--------------------|-----------------------------------|---|--| | Oklahoma | 7-8 | | | | | Snow | Snowfall which occurred mostly on the 7th and 8th, averaged 6.2 inches for the State. In only 3 of the past 44 years has the January snowfall been heavier. Main highways were blocked and secondary roads remained badly drifted for | | Texas | 13-14 | | | | \$16,000,000 | Glaze | days. Traffic accidents were numerous. A heavy accumulation of glaze caused tremendous damage to east Texas timberlands surrounding Lufkin and caused much damage to utility poles and wires in east-central portions of the State. Damage due to stripping of timber was estimated at \$16,000,000, but no estimate on damage to utilities was obtainable. | | Helena, Mont | 17 | | | - | | Wind | Maximum velocities reported by the first-order Weather Bureau stations were from 40 to 56 miles per hour. Only minor damage to power and telephone lines, fences, sign-boards, and buildings. Reports from the area around Havre indicate that there was some damage to exposed winter wheat, amount not estimated. | | Nebraska, extreme western and central portions. | 26-27 | | | | 100,000 | Snow, wind, rain, and ice. | Greatest damage to telephone and other wires in central portion
of the State. In the western part, considerable delay was
experienced by motorists where roads were closed by drifts, | | Oklahoma, central and western
portions.
South Dakota | 26-27
26-28 | P. M | | 1 | 155, 000 | Tornadoes and wind-
storms.
Heavy rain, snow, and
high wind. | 27 persons injured; property damaged. Rain and snow, accompanied by near freezing temperature and high wind, blocked traffic, closed some schools, delayed railroad and bus service, and damaged telephone and power lines. A man died of exhaustion due to bad drifts at the Army Air Base in Rapid City. | ## SOLAR RADIATION AND SUNSPOT DATA FOR JANUARY 1944 [Solar Radiation Investigations Section, I. F. HAND, in charge] #### SOLAR RADIATION OBSERVATIONS MEASUREMENTS of solar radiant energy received at the surface of the earth are made at 10 stations maintained by the Weather Bureau and at 17 stations maintained by other institutions. The intensity of the total radiation from sun and sky on a horizontal surface is continuously recorded (from sunrise to sunset) at all these stations by means of self-registering instruments; pyrheliometric measurements of the intensity of direct solar radiation at normal incidence are made at frequent intervals on clear days at three Weather Bureau stations (Madison, Wis., Lincoln, Nebr., and Albuquerque, N. Mex.), and at the Blue Hill Observatory of Harvard University. Table I contains the measurements of the intensity of direct solar radiation at normal incidence, with means and their departures from normal (means based on less than 3 values are in parenthesis). At Lincoln, Madison, Albuquerque, and Blue Hill the observations are obtained with a recording thermopile, checked by observations with a Smithsonian silver-disk pyrheliometer at Blue Hill. The table also gives vapor pressures at 7:30 a.m. and at 1:30 p.m. (75th meridian, E. S. T.). Early in December 1943, an Eppley ten-junction pyrheliometer and a Leeds and Northrup micromax potentiometer were installed on top of one of the greenhouses of the Department of Horticulture, University of Missouri, Columbia, Mo. The equipment will be under the immediate supervision of Prof. A. E. Murneek, who intends to study the relationship between solar radiation values and the growth of tomato plants treated with hormones. All apparatus has been standardized and placed on the Smithsonian Scale of Pyrheliometry. Prof. George O. G. Löf of the University of Colorado has installed radiation equipment to measure total solar and sky radiation at Boulder, Colo., in order to correlate insolation with house heating by solar energy. This station has the greatest elevation of any of those whose data appear regularly in the Monthly Weather Review. Solar radiation equipment has been installed also at the University of Los Angeles, under the direction of Prof. Charles P. Hedges. In order to study the effect of atmospheric contamination, an Eppley ten-junction pyrheliometer and a Leeds and Northrup micromax potentiometer were recently installed at the city office of the Weather Bureau in Boston. This new site is 10 miles north of Blue Hill Observatory. Preliminary data show markedly the effect of city smoke in Boston. On January 18, a day without condensed water vapor clouds but with a heavy smoke pall over the city, the radiation on top of the 19-story Federal Building was less than one-tenth of that at Blue Hill for the hour ending at 9:00 a. m., solar time. The total radiation for the entire day was one-quarter less than that received at Blue Hill during the same period; the percentage loss of the ultraviolet is many times that of the visible or other components. This accounts to a large extent for the much greater percentage of cases of rickets in large industrial cities as compared with smaller towns or open country. The coordinates of the four new stations are given in table 3. Table 2 contains the daily amounts of radiation received on a horizontal surface from both sun and sky for all stations except Fairbanks, Alaska; and also the weekly means, their departures from normal and the accumulated departures since the beginning of the year. The values at most of the stations are obtained from the Eppley pyrheliometer, recording either on a microammeter or a potentiometer. If the daily values for total solar and sky radiation at Fairbanks should be desired, they may be obtained approximately 2 months after the date of the observation by writing to the Solar Radiation Investigations Supervisory Station, Blue Hill Observatory, Milton, Mass. Table 3 gives information about the solar radiation stations which are maintained by, or cooperate with, the Weather Bureau. # Table 1.—Solar radiation intensities during January 1944 [Gram-calories per minute per square centimeter of normal surface] Madison, Wis. Albuquerque, N. Mex. | | | | | | | | | | | | | | | | | puquei | | | | | | | | |----------------------|------------------------------|--------------------|----------------------------|----------------------------------|-------|----------------------------------|-------|----------------------------------|-------|-----------------------|----------------------------------|----------------------|----------------------------------|------------------------|----------------------------------|----------------------------------|-------------------------|------|----------------|-----------------------------|---------------|-------|----------------------------------| | | Sun's zenith distance | | | | | | | | | Sun's zenith distance | | | | | | | | | | | | | | | | 7:30
a, m. | 78.7° | 75.7° | 70.7° | 60.0° | 0.0° | 60.0° | 70.7° | 75.7° | 78.7° | 1:30
p. m. | | 7:30
a. m. | 78.7° | 78.7° 75.7° 70.7° 60.0 | | | | 60.0° | .0° 70.7° 75.7° 78.7° | | | | | Date | 75th | K11 | | | | | | | | | Local | Date | 75th | h Air mass | | | | | | | | Local | | | | mer.
time | | Δ. | м. | | | | P. | ж, | | solar
time | | mer.
time | | А. М. | | | | Р. М. | | | | solar
time | | | e. | 5.0 | 4.0 | 3.0 | 2.0 | *1.0 | 2.0 | 3.0 | 4.0 | 5.0 | е. | | е. | 5.0 | 4.0 | 3.0 | 2.0 | *1.0 | 2.0 | 3.0 | 4.0 | 5.0 | е. | | Jan. 7 | mb.
0.70 | cal. | cal.
0.80 | cal.
0. 95 | cal. | cal. | cal. | cal.
1.14 | cal. | cal. | mb.
1.73 | Jan. 1 | mb.
2.13 | cal.
0. 96 | ca/.
1.07 | cal. mb.
3.6t | | 8
11
12
13 | 1.83
1.08
1.22 | 1.01
.88
.75 | 1.11
.99
.90
1.04 | 1. 21
1. 11
1. 07
1. 14 | | 1. 54
1. 30
1. 29
1. 46 | | 1. 11
1. 06
1. 11
1. 13 | | | 1. 66
1. 93
1. 29
1. 93 | 3
5
13
16 | 3, 32
1, 43
1, 93
2, 61 | . 97
1. 05
1. 05 | 1. 06
1. 16
1. 08
1. 13 | 1. 15
1. 25
1. 21
1. 21 | 1. 35 | | 1. 39
1. 33 | 1. 17
1. 19
1. 12 | 0. 97
. 90 | | 4. 46
3. 01
2. 78
5. 56 | | 14
15
17
20 | 2.74
2.03
3.83
2.88 | .70
.66
.39 | . 84
. 83
. 55 | 1. 04
. 86
. 75 | | 1. 40 | | 1.02
.74
1.10 | | | 3. 83
4. 40
4. 84
3. 72 | 19
20
21
27 | 3. 01
3. 01
3. 32
3. 65 | 1.04 | 1. 10 | 1. 21
1. 15 | 1, 33
1, 21
1, 38 | | 1.11 | 1. 02
1. 05 | .88 | | 4, 20
4, 60
5, 32 | | 2129 | 4. 84
4. 20 | . 95 | 1.07 | 1. 22 | | 1. 57 | | 1. 19 | | | 4. 64
5. 82 | 28
30 | 4. 20
4. 40 | . 94 | | 1. 2 6
1. 15 | 1. 32 | | 1. 35
1. 35 | 1. 19 | | | 5. 83
5. 56
5. 83 | | Means
Departures | | .78
14 | . 90
13 | 1. 04
—. 15 | | 1. 40
16 | | 1.06
08 | | | | Means
Departures | | 1.00
05 | 1. 10
—. 05 | 1. 20
07 | 1. 32
—, 09 | | 1. 31
—. 17 | | . 92
17 | | | ^{*}Extrapolated. Table 2.—Daily totals and weekly means of solar radiation (direct+diffuse) received on a horizontal surface [Gram-calories per square centimeter] | | · | 1 | | | | <u> </u> | | | | | · · · · · | | | | | | | | | | |---|---|--|---|--|--|---|---|---|---|---|--|--|---|---|---|--|---|--|---|---| | Date | Wash-
ington,
D. C. | Mad-
ison,
Wis. | Lin-
coln,
Nebr. | East
Lans-
ing,
Mich. | New
York,
N. Y. | Fres-
no,
Calif. | Bos-
ton,
Mass. | Nash-
ville,
Tenn. | Twin
Falls,
Idaho | La
Jolla,
Calif. | New
Or-
leans,
La. | River-
side,
Calif. | Blue
Hill,
Mass. | Put-
in-
Bay,
Ohio | Itha-
ca,
N. Y. | New-
port,
R. I. | State
Col-
lege,
Pa. | Los
Ange-
les,
Calif. | Davis,
Calif. | East
Ware-
ham,
Mass. | | Jan. 1 | cal. 189 118 21 114 38 172 192 | cal.
129
97
170
95
91
118
215 | cal.
159
180
41
24
259
102
148 | cal. 39 100 83 46 24 143 63 | cal.
171
121
17
63
106
86
214 | cal. 180 173 173 170 114 132 223 | cal. | cal.
179
13
9
49
14
231
81 | cal. 78 80 150 231 91 192 255 | cal.
281
160
246
206
277
280
292 | 324
194
878
19 | cal.
261
84
192
242
252
286
291 | cal.
205
206
89
24
62
19
211 | cal. 29 85 44 47 11 205 127 | cal.
100
99
43
109
50
33
174 | cal.
172
209
56
12
206
30
229 | cal.
43
99
14
236
31
119
152 | cal.
264
64
260
256
221
314
291 | cel.
52
70
84
83
106
250
238 | cql.
191
190
72
15
95
38
234 | | Mean
Departure | 120
-45 | 131
+2 | 130
-38 | 71
—15 | 111
6 | 166
+19 | | 82
-26 | 153
+4 | 249
+3 | 227
+51 | 230
16 | 117
24 | 78
-12 | 87
12 | 131
-15 | 99
-12 | 238 | 1 26
- 39 | 121
-39 | | Jan. 8. 9 10 11 11 12 12 13 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 110
272
174
211
201
210
267 | 270
148
184
227
240
227
211 | 249
256
261
260
281
293
268 | 135
72
131
84
75
116
169 | 160
226
185
133
190
232
151 | 268
251
169
152
266
251
224 | | 36
177
275
227
168
180
100 | 163
231
137
226
239
176
116 | 236
300
128
288
308
294
314 | 75
299
394
224
36
25
40 | 241
262
141
300
299
304
302 | 211
247
234
193
169
251
94 | 128
138
125
150
139
239
222 | 113
140
140
141
175
124
131 | 199
238
209
197
188
236
86 | 108
248
191
158
196
250
217 | 279
292
140
275
304
312
314 | 209
73
150
257
227
87
228 | 216
256
223
212
179
260
70 | | Mean
Departure | 206
+51 | 215
+79 | 267
+84 | 112
+1 | 182
+57 | 226
十66 | | 166
+12 | 184
+29 | 267
+3 | 156
5 7 | 264
+15 | 200
+36 | 163
+41 | 138
+27 | 193
+20 | 195
+54 | 274 | 176
22 | 202
+28 | | Jan. 15 | 19
244
198
200
66
119
162 | 177
80
202
120
72
153
231 | 247
217
274
218
257
254
249 | 176
180
183
80
90
43
90 | 46
221
137
76
123
108
120 | 142
246
237
273
283
265
210 | 35
52
34
148
82
124
159 | 24
167
230
190
251
107
282 | 160
235
221
215
262
231
241 | 306
318
243
220
195
196
231 | 394
361
338
458
416 | 298
302
237
238
286
178
256 | 140
247
218
194
103
161
190 | 123
213
214
137
89
98
174 | 116
240
157
125
71
36
105 | 109
228
179
115
108
46
66 | 76
279
138
114
48
126
221 | 292
343
246
800
313
206
274 | 234
206
274
284
284
230
231 | 128
230
247
191
85
48
88 | | Mean
Departure | 144
-14 | 148
-4 | 245
+55 | 120
11 | 119
-3 | 236
+53 | 91 | 179
-5 | 224
+49 | 244
20 | 393
+142 | 256
25 | 179
+19 | 150
+10 | 121
+5 | 122
46 | 143
+4 | 282 | 249
+38 | 145
6 | | Jan. 22 | 227
142
258
238
242
212
161 | 141
242
63
101
68
17
94 | 299
125
117
192
62
233
315 | 54
140
114
41
185
13
94 | 121
99
238
97
37
154
12 | 253
183
105
272
186
253
238 | 220
24
242
135
14
119
144 | 249
258
210
114
118
181
306 | 198
88
64
148
283
138
263 | 172
111
240
314
286
326 | 294
419
248
76
184
233
126 | 158
89
158
226
177
214
265 | 234
29
256
205
41
158
197 | 134
172
142
192
207
68
267 | 219
26
232
44
95
10
52 | 280
41
266
199
55
151
175 | 137
79
224
164
204
82
236 | 269
56
234
295
203
212
344 | 235
116
309
317
158
281
134 | 217
31
264
166
68
144
204 | | Mean
Departure | 211
+36 | 104
76 | 192
29 | 87
51 | 108
47 | 213
+10 | 128 | 204
+19 | 169
—11 | 241
28 | 226
+5 | 184
57 | 160
—16 | 169
+28 | 97
—39 | 160
—12 | 161
+39 | 230 | 221
+29 | 156
+18 | | | | | | | ACCUN | 1ULATI | ED DEP | ARTU | RES O | N JAN | UARY: | 28, 1944 | | | .! | | | | | | | | +196 | +7 | +504 | -532 | +7 | +1036 | | 0 | +497 | -294 | +987 | -581 | +105 | +469 | -133 | -371 | +595 | | +42 | +7 | ## MONTHLY WEATHER REVIEW Table 3 .- Pyrheliometric Stations | | - | · | | 1 | | | | | | | | |-------------------------------------|--|-------------------------|--------------------------|------------------|----------|-------------------------|--|--|--|--|--| | Station | Under direction of— | North
lati- | West
longi- | Alti- | | nstruments | - Remarks | | | | | | | | tude | tude | tude | Receiver | Recorder | | | | | | | New Orleans, La | Tulane University | 。 ,
29 56 | 90 07 | | Eppley | L&N potentiometer_ | Good exposure; considerable cloudiness. | | | | | | La Jolla, Calif | Scripps Institute of Ocean-
ography. | 32 52 | 117 15 | 90 | | Engelhard | Splendid exposure a few yards inland from Pacific Ocean
Early morning fogs prevail during part of year. | | | | | | Riverside, CalifLos Angeles, Calif | University of California | 33 58
34 04 | 117 28
118 26 | 1, 051
535 | do | G. E. potentiometer | Excellent exposure in midst of citrus fruit region. (See text.) | | | | | | Albuquerque, N. Mex. 15. | | 35 05 | 106 30 | 5, 314 | do | L&N potentiometer | At airport; dust at times. Second hignest elevation of this group. | | | | | | • | do | 36 07 | 86 41 | 1 | 1 | do | At airport with good exposure, but records vitlated by soft-coal smoke in winter. | | | | | | | do | | 119 49 | 1 | | Engelhard | Good exposure at airport northern edge of city. The
San Joaquin Valley has an exceedingly high percentage
of surphine | | | | | | Davis, Calif.
Washington, D. C | University of California
U. S. Weather Bureau | 38 32
38 56 | 121 45
77 05 | 106
397 | do | L&N potentiometer
do | Excellent exposure; little atmospheric contamination. Good exposure on second highest point in District of | | | | | | Columbus, Ohio | University of Missouri Ohio State University | 39 58 | 92 19
83 00 | 810 | do | do | Columbia. 514 miles northwest of United States Capitol. Some vitiation from city smoke. Free horizon; considerable soft-coal smoke. Considerable smokiness with light winds. | | | | | | Boulder, Colo
New York, N. Y | University of Colorado
U. S. Weather Bureau | 40 00
40 47 | 105 16
73 58 | 5, 428 | do | Brown pyrometer | Considerable smokiness with light winds. Normally clear air, low humidity, no dust or smoke. Fair exposure at Central Park Meteorological Observatory. Values vitiated by large city atmospheric con | | | | | | State College, PaLincoln, Nebr. | State College, Pa
U. S. Weather Bureau | 40 48
40 49 | 77 52
96 42 | 1, 200
1, 250 | do | L&N potentiometerdodo | tamination. Splendid exposure in farming country. Results very representative of the Great Plains area Some dust. | | | | | | Newport, R. I.4
Put-in-Bay, Ohio | Frong Theodore Stone Bio. | 41 30
41 39 | 71 19
82 50 | | t | do | Excellent location. Almost no smoke or dust contamination. On an island 22 miles from the mainland. | | | | | | East Wareham, Mass | logical Laboratory. U. S. Bureau of Plant Industry in cooperation with Massachusetts Experiment Station. | 41 46 | 70 40 | 50 | do | Engelhard | Low ground; close to cranberry bogs and open water. | | | | | | Chicago, Ill.1 | U. S. Weather Bureau | 41 47 | 87 25 | 688 | do | do | Good exposure on roof of Rosenwald Hall, University of Chicago. A great deal of smoke. | | | | | | Blue Hill, Mass. | Harvard University | 42 13 | 71 07 | 672 | do | L&N potentiometer | Excellent exposure on high ridge 10 miles south of Boston With northerly component winds, some smoke con tamination from Boston. | | | | | | Boston, Mass | U. S. Bureau of Entomology | 42 21
42 27
42 27 | 71 04
76 29
114 34 | 836 | do | do
do
Engelhard | Serious smoke contamination. Free horizon. Splendid site; data used by School of Agriculture. Good exposure on high plateau in rich farming country. | | | | | | East Lansing, Mich | and Plant Quarantine. | 42 42 | 84 28 | 1 ' | 1 | L&N potentiometer | Very little atmospheric contamination on low ridge dividing two watersheds. | | | | | | Madison, Wis. | Michigan Agricultural Ex-
periment Station. | 43 05 | 89 23 | 974 | do | do | Excellent exposure, North Hall, University of Wisconsin
Rapid growth of city has added to atmospheric vitia | | | | | | Friday Harbor, Wash.1. | University of Washington | 48 - 32 | 123 01 | 15 | do | Engelhard | tion recently. Good exposure 50 miles northwest of Seattle directly or ocean; considerable fog interference. | | | | | | Fairbanks, Alaska | University of Alaska | 64 51 | 147 49 | 555 | do | L&N potentiometer | Most northerly station of this kind in the world. Very little contamination. | | | | | ¹ Temporarily abandoned. ¹ It is hoped that work will be resumed after the war. ¹ Measurements of total solar and sky radiation have been discontinued at Albuquerque until such time as a replacement potentiometer may be obtained. Normal incidence readings are made at this station by means of an Eppley normal-incidence pyrheliometer recording on a Bristol potentiometer. ⁴ Besides the standard Eppley pyrheliometer and Leeds and Northrup potentiometer, the laboratory has precision equipment for the standardization of pyrheliometers. ³ Station also equipped with normal-incidence pyrheliometers recording on Leeds and Northrup potentiometers. At Blue Hill several other types of solar observations also are made.